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ABSTRACT

The most common sinusoidal models for non-stationary analysis
represent either complex amplitude modulated exponentials with
exponential damping (cPACED) or log-amplitude/frequency mod-
ulated exponentials (generalised sinusoids), by far the most com-
monly used modulation function being polynomials for both sig-
nal families. Attempts to tackle a hybrid sinusoidal model, i.e. a
generalised sinusoid with complex amplitude modulation were re-
lying on approximations and iterative improvement due to absence
of a tractable analytical expression for their Fourier Transform. In
this work a simple, direct solution for the aforementioned model
is presented.

1. INTRODUCTION

Sinusoidal analysis algorithms’ vast area of application, ranging
from sound and music analysis [1, 2], medical data analysis [3]
and imaging [4], Doppler radar [5] and sonar applications, seismic
signal analysis, hydrogen atom spectrum analysis [6], laser tech-
nology [7] and financial data analysis [8] had fuelled the research
field for decades. Rapidly modulated sinusoids found in most of
the aforementioned applications have sparked the interest in non-
stationary sinusoidal analysis.

Recent development in this area, have provided efficient and
accurate methods for either cPACED or generalised sinusoid model.
A somehow hybrid model was attempted with real polynomial
amplitude amplitude and frequency modulation, however to au-
thors’ knowledge only approximate, iterative-improvement type
algorithm were developed to date [9, 10].

A very old idea of TF energy reassignment [11] has been a
focus of much research lately [12, 13, 14, 15, 16]. The vast variety
of modifications of the original reassignment, be it merely a gen-
eralisation for higher modulations [17] or redefined for an entirely
different model [18], has called for a more general name for this
family of algorithms. Recently a reallocation [19] of TF energy
was proposed and will be used in this work.

The paper is organised as follows: in 2 the hybrid signal model
is outlined, while section 3 derives the non-linear multivariate poly-
nomial system and its solution, inspired by the distribution deriva-
tive method. Section 4 compares the accuracy and computational
complexity of the proposed algorithm to the high-resolution method
based on rotational invariance.

2. HYBRID SIGNAL MODEL

The hybrid sinusoidal model will be defined as follows:

s(t) = a(t)er(t), (1)

a(t) =
∑
k=0

akmk(t), ak ∈ C (2)

r(t) =
∑
l=0

rlnl(t), rl ∈ C (3)

where mk, nk are the complex amplitude and log-AM/FM model
functions respectively. To accommodate for the static amplitude
and phase, m0 = n0 = 1 is assumed. A most common, but by no
means mandatory selection for the model functions are polynomi-
als: mk = nk = tk.

The above model 1 is ambiguous with respect to parameters
r0 and a0. To show this, the following derivation is considered:

s(t) = a(t)er(t) = a0ã(t)er0+r̃(t) (4)

= ã(t) exp(

r̃0︷ ︸︸ ︷
log(|a0|) + j∠(a0) + r0 +r̃(t)), (5)

Clearly a0 and r0 are in fact the same parameter in either Cartesian
or polar coordinates. The decision seems irrelevant, however as
will be shown in section 3, using the Cartesian form would result
in a rank-deficient system, therefore the model will be constrained
to a0 = 1.

It is important to note that since modulation functions are com-
plex they both contribute to overall AM/FM. If the same model
functions are used (mk = nk) that can lead to some ambiguity,
especially when the energy of mk, nk declines fast with k. Such
ambiguity can be demonstrated when using polynomials for the
modulation functions mk = nk = tk:

a(t)er(t) = exp(log(a(t)) + r(t)) (6)

≈ exp(a1t+ (2a2 − a12)t2 + r(t)), (7)

using the 2nd degree truncated Taylor expansion. It is expected
that an estimator for the model in 1 could be inaccurate when sep-
arate parameter estimates are considered, but generally much more
flexible due to twin AM/FM functions. In practice however one is
mostly concerned with algorithm’s overall ability to fit to the signal
under investigation, rather then individual per-parameter accuracy.
It would be feasible to devise a disambiguation procedure but this
is considered to be outside the scope of this document.

An example is shown in figure 1, where 2 hybrid model sinu-
soids with significantly different a1, r1 reach a signal-to-residual
ratio (SRR) of 24dB. To reach higher SRR the parameters would
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Figure 1: Two sinusoids with significantly different parameters ob-
tain a similar SRR of 24dB.

have to eventually match exactly, however in noisy conditions a
relatively high SRR is achievable with substantial error in per-
parameter estimates. From figure 1 is also evident that the pro-
posed model includes sinusoids with negative amplitude, suggest-
ing good coding abilities for sinusoid pairs with close frequen-
cies (i.e.: beating partials). The negative amplitude can occur
when =[a(t)] = 0, since the overall amplitude corresponds to:√
a(t)ā(t)e<[r(t)]. The notion of negative amplitude is purely ar-

tificial (
√
a(t)ā(t)e<[r(t)] cannot be negative), as it does not have

a natural physical meaning, however it comes handy as a mathe-
matical generalisation. If negative amplitude is not allowed and
=[a(t)] = 0, the derivative of

√
a(t)ā(t)e<[r(t)] = |a(t)|e<[r(t)]

is not continuous for all roots of a(t) and thus the model function
could not be considered a holomorphic function. In such cases the
absolute value can be easily dropped and negative amplitude intro-
duced, leading to a mathematically sound model in the context of
holomorphic functions.

3. NON-LINEAR MULTIVARIATE POLYNOMIAL
SYSTEM OF EQUATIONS

The non-linear system can be derived by considering the signal
time derivative manipulated in the following way:

s′(t) =a′(t)er(t) + r′(t)a(t)er(t),⇒ (8)

a(t)s′(t) =a′(t)s(t) + a(t)r′(t)s(t). (9)

The last row can be rewritten in a more verbose form that reveals
the non-linearity of the system:

m0s
′ +

K∑
k=1

akmks
′ =

K∑
k=1

akm
′
ks+

(
m0 +

K∑
k=1

akmk

)
L∑

l=1

rln
′
ls,

(10)

where time variable t was omitted for compactness. The only non-
linear terms arise from the last - double sum expression. Multiply-
ing both sides with a window function w(t) and taking a Fourier

Transform (FT) at frequency ω yields:

S′wm0
(ω) +

K∑
k=1

akS
′
wmk

(ω) =

K∑
k=1

akSwm′
k
(ω)+

L∑
l=1

rlSwm0n
′
l
(ω)+

K∑
k=1

L∑
l=1

akrlSwmkn
′
l
(ω),

(11)

where Sf (ω) = 〈s(t)f(t), ejωt〉 is the FT of the signal s mul-
tiplied by function f , and S′g(ω) = 〈s′(t)g(t), ejωt〉 is the FT
of the signal derivative multiplied by function g at frequency ω.
Note that n′0 = m′0 = 0 and thus the sums on the right-hand side
start at index 1 rather than 0. Above equation can be viewed as
a (non-linear) multivariate polynomial with respect to parameters
ak : k = 1 . . .K, rl : l = 1 . . . L. The expressions S′f , Sg can be
considered constants for any f, g as they can be directly computed
from the signal. To calculate S′f accurately, sample difference in
time domain should be avoided [12]. A common approach is the
use of distribution derivative rule 〈x′, y〉 = −〈x, y′〉 and a real
window function w as a part of the kernel y:

S′gw(ω) =〈s′g, wψω〉 = 〈s′, ḡwψω〉 (12)

=− 〈s, ḡ′wψω〉 − 〈s, ḡw′ψω〉+ jω〈s, ḡwψω〉 (13)

=− 〈sg′, wψω〉 − 〈sg, w′ψω〉+ jω〈sg, wψω〉 (14)
= −Sg′w(ω)− Sgw′(ω) + jωSgw(ω), (15)

where ψω is generally a kernel function with FT centred around
frequency ω. For the last equality to hold the kernel is set simply
to the Fourier kernel: ψω(t) = ejωt. Higher time derivatives can
accurately be computed by chaining the above expression. Rear-
ranging the equation and collecting together the model parameters
yields:

S′wm0
(ω) =

K∑
k=1

ak(Swm′
k
(ω)− S′wmk

(ω))+

L∑
l=1

rlSwm0n
′
l
(ω) +

K∑
k=1

L∑
l=1

akrlSwmkn
′
l
(ω). (16)

Taking the FT at different frequencies close to the peak provides
as many equations as necessary. Assuming polynomial modulation
functions, the following system can be derived:

S′w(ω) +

K∑
k=1

akS
′
tkw(ω) =

K−1∑
k=1

kakStk−1w(ω)

+

K∑
k=1

aK

L−1∑
l=0

(l + 1)rl+1Stk+l(ω) +

L−1∑
l=0

(l + 1)rl+1Stl(ω)

(17)

For a cPACED sinusoids with polynomial amplitude of degree 3
(ie: K=3, L=1) the following case can be deduced:

S′w(ω) + a1S
′
tw(ω) + a2S

′
t2w(ω) + a3S

′
t3w(ω) =

a1Sw(ω) + 2a2Stw(ω) + 3a3St2w(ω) + a1r1Stw(ω)

+ a2r1St2w(ω) + a3r1St3w(ω) + r1Sw(ω) (18)
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Grouping the linear and non-linear terms in respect to al, r1:

S′w(ω) = a1(Sw(ω)− S′tw(ω)) + a2(2Stw(ω)− S′t2w(ω))+

a3(3St2w(ω)− S′t3w(ω)) + r1Sw(ω) + a1r1Stw(ω)

+ a2r1St2w(ω) + a3r1St3w(ω). (19)

The distribution derivative rule can be applied to the S′ terms:

S′tkw(ω) = −kStk−1w(ω)− Stkw′(ω) + jωStkw(ω),

for k > 0 (20)

S′w(ω) = −Sw′(ω) + jωSw(ω),

for k = 0 (21)

Following the approach of the distribution derivative method and
considering the FT at 4 different frequencies, we obtain the fol-
lowing non-linear multivariate system:

Ax = b (22)

A =



Sw(ω1)− S′tw(ω1) · · · Sw(ω4)− S′tw(ω4)
2Stw(ω1)− S′t2w(ω1) · · · 2Stw(ω4)− S′t2w(ω4)
3St2w(ω1)− S′t3w(ω1) · · · 3St2w(ω4)− S′t3w(ω4)

Sw(ω1) · · · Sw(ω4)
Stw(ω1) · · · Stw(ω4)
St2w(ω1) · · · St2w(ω4)
St3w(ω1) · · · St3w(ω4)



′

(23)

x =



a1
a2
a3
r1
r1a1
r1a2
r1a3


, b =

 S′w(ω1)
S′w(ω2)
S′w(ω3)
S′w(ω4)

 .

Note that for high parameter values, the frequency spread of the
signal might be large - a small number of frequency bins (in the
above case 4) might not suffice to cover enough information in
the Fourier domain. In such cases more frequency bins can be
considered.

4. TESTS AND RESULTS

The proposed method was implemented in a Matlab script for an
arbitrary degree of amplitude and exponential complex polynomi-
als. The resulting multivariate non-linear systems were solved by
the Matlab function fsolve. This function only accepts real vari-
ables and coefficients as parameters, although internally can use
complex variables and solve the system if the complex equations
are split into real and imaginary parts.

A polynomial amplitude of degree 3 was studied and the poly-
nomial denoted as: [a3, a2, a1, 1] = [p3 + jq3, p2 + jq2, p1 +
jq1, 1]. The test values for p3, p2, p1 were chosen so all the terms

of the amplitude polynomial have equal impact on the final value:

p3 ∈

[
−
(
fs

8T

)3

,

(
fs

8T

)3
]

(24)

p2 ∈

[
−
(
fs

8T

)2

,

(
fs

8T

)2
]

(25)

p1 ∈
[
− fs

8T
,
fs

8T

]
. (26)

The exact same value sets were used for the imaginary part of the
polynomial q(t). A Hann window function of length 511 samples
was used for pole estimation and Hann window for the complex
polynomial coefficients estimation. The damping factor was set to
[-150,0,150] and only one frequency of 10000Hz was considered
to match tests performed in [12]. r0 was set to 0, since gain has
theoretically no effect when the snr is fixed. For p1, p2, p3, q1, q2
and q3 parameters, only 5 linearly distributed values have been
tested in order to keep the computational time reasonable. The
comparison to a 3th degree (i.e. 4 poles and amplitudes) sim-
ple high-resolution method (HRM) implementation from DESAM
Toolbox [20] (section 5.1.2.) without whitening and the cPACED
reassignment method (cPACED-RM) [18] was conducted. The
signal tested is the real part of the complex cPACED signal, re-
flecting the real world scenario when analytical signal isn’t avail-
able.

To measure accuracy, the commonly used Signal-to-Residual-
Ratio (SRR) metric was used,

SRR =
〈s, ws〉

〈s− ŝ, w(s− ŝ)〉 , (27)

where s, ŝ are the original signal (without noise) and the estimated
signal respectively, and w is the Hann window. The Signal-to-
Noise-Ratio (SNR) range from -20 to 50dB with steps of 10dB
was studied. The total computation times for both methods follow:

cPACED-RM 7 min
cPACED-DDM 300 min
High-resolution 880 min

(28)

Since HRM involves singular value decomposition of correlation
matrix of sizeN/2×N/2 the computation cost is significantly the
highest among the tested methods. cPACED-RM method requires
K − 1 FFTs for the pole and K DTFTs for the complex polyno-
mial estimates to build a linear system. In contrast, the proposed
method requires only K DTFTs to build a non-linear multivari-
ate system. However, solving such system by iterative methods
requires a significant computation cost. cPACED-RM method per-
forms much faster since it requires solving a linear system.

The classic Cramer-Rao bounds (CRBs) parameter-by-parameter
comparison would total to 10 plots, overcomplicating the results
and obscuring the overall accuracy. A more intuitive approach
involves only one SRR/SNR plot, although a different upper ac-
curacy bound is required. For each test case the CRBs for each
parameter were computed. Denoting a CRB for parameter a0 as
εa0 , the minimum SRR for the specific CRB set can be defined:

minSRR(ŝ(a3±εa3 , a2±εa2 , a1±εa1 , r0±εr0 , r1±εr1). (29)

The mean and variance of the minimum SRR represents a good up-
per SRR bound. Figure 2 depicts the mean and variance of the up-
per SRR bound, the proposed method (cPACED-DDM), cPACED-
RM and HRM. At low SNR, cPACED-DDM and cPACED-RM
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perform roughly the same, up to ˜5dB below the upper bound,
while cPACED-RM performs ˜3dB better. For mid-high SNRs, all
methods perform roughly the same, about ˜5dB below the upper
bound. In general cPACED-DDM performs ˜1dB below cPACED-
RM.

The main advantage of the proposed algorithm is that it of-
fers the flexibility to analyze generalised sinusoids with complex
amplitude of any polynomial degree combination. With the pur-
pose of having an initial exploration of its general performance,
we have computed the mean SRR obtained for several combina-
tions of amplitude and exponential complex polynomial degrees.
In particular, amplitude polynomial degrees were set to [0,1,2,3]
and exponential polynomial degrees to [1,2,3]. Table 1 shows the
results obtained. In this experiment we used the same polynomial
coefficient value sets as for the previous cPaced case. For each
SNR, the results show a general tendency to decrease the SRR as
we increase the complexity of the signal by increasing the degrees
of the polynomials. Figure 3 compares the mean and variance of
the SRR obtained for all degree combinations with the SNR. It
shows a general trend of reaching an SRR ˜24dB above the SNR
value, although the difference decreases significantly to ˜13dB for
SNR=-20dB, and to ˜14dB for SNR=50dB. This seems to indicate
that the proposed method reaches a plateau for high SNRs above
50dB.

5. DISCUSSION AND FUTURE WORK

In this work the currently most flexible sinusoidal method for TF
energy reassignment analysis has been described. The concept
used in the distribution derivative method is used to generate a non-
linear multivariate system of polynomials obtained by the first sig-
nal derivative. It is important to note that higher signal derivatives
would provide enough equations for a solution to exist, however a
significantly more complex system would be obtained. Even if so-
lution could eventually be obtained, it is desirable to avoid higher
signal derivatives due to ill conditioning.

The method showed a similar performance than the high reso-
lution and the reassignment methods for the cPACED signal model,
however in theory the proposed method is much more flexible
since it can be applied to generalised sinusoids with complex am-
plitude of any polynomial degree combination. The initial explo-
ration of the performance obtained for several degree combina-
tions was promising, although a more in depth evaluation was left
for future work. Further, the proposed sinusoidal model seems
promising for the analysis of overlapping partials, as the beat-
ing function corresponds to real value amplitude/frequency modu-
lated sinusoids - a subfamily of signals described by the proposed
model.

On the other hand high-resolution methods’ intrinsic frequency
resolution of 1 frequency bin [21, 22] for damped sinusoids has
not been surpassed, as common window function mainlobe width
(several bins) and significant sidelobe amplitude both reduce the
frequency resolution.
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Figure 3: mean and variance of SRR means for all combinations of [0,1,2,3] amplitude polynomial degrees and [1,2,3] exponential
polynomial degrees sets. Details are given in Table 1.

SNR a0r1 a0r2 a0r3 a1r1 a1r2 a1r3 a2r1 a2r2 a2r3 a3r1 a3r2 a3r3
50 72.2 66.7 64.6 62.8 63.9 62.3 64.2 61.2 60.5 62.3 60.8 58.2
40 67.0 63.1 61.7 59.2 61.3 60.0 61.7 59.2 58.7 60.1 58.9 56.6
30 56.6 56.5 54.2 54.3 54.6 53.2 54.5 53.0 52.4 53.3 52.4 50.5
20 50.0 46.4 44.7 44.9 45.2 43.8 44.8 43.6 42.9 44.0 43.0 41.1
10 36.2 35.2 34.7 36.8 34.8 33.6 35.0 33.5 32.8 33.9 32.7 29.4
0 25.9 25.7 24.9 26.4 25.2 23.2 25.2 23.1 22.1 23.8 21.7 15.1

-10 13.7 16.8 14.9 15.4 14.6 10.3 14.7 10.9 8.4 13.3 7.8 -1.8
-20 3.2 1.4 -3.0 -1.5 -2.4 -7.4 -1.6 -6.9 -13.1 -2.5 -10.4 -19.8

Table 1: SRR mean for several polynomial degree combinations. Column numbers in top row indicate amplitude and exponential complex
polynomial degrees respectively (e.g. a1r3 means amplitude polynomial degree 1 and exponential polynomial degree 3).
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